metadump module
- metadump.attribute_contains(ds, var, substring)
- metadump.get_model_dim_name(dims, dim_name, meta_coords, source='generic')
- metadump.has_multiple_time_levels(ds, var, tc)
- metadump.is_plottable(ds, var, space_coords, zc, tc)
- metadump.json_compatible(value)
Ensure all values in metadata are JSON-compatible Apply recursively to each item as needed
- metadump.main()
Driver to generate source metadata and, optionally, YAML files required by autoviz
- To run:
python metadump.py filepath [options]
- metadump.metadump(filepath_1, filepath_2=None, app_output=None, specs_output=None, json_output=None, ignore_vars=None, vars=None, source='generic')
- metadump.parse_command_line() Namespace
Parse command line arguments.
Example
>>> python metadump /path/to/file.nc >>> python metadump /path/to/file.nc --json >>> python metadump /path/to/file.nc --app foo.yaml --specs foo_specs.yaml >>> python metadump /path/to/file.nc --app foo.yaml --specs foo_specs.yaml --ignore Var >>> python metadump /path/to/file.nc --app foo.yaml --specs foo_specs.yaml --vars var1 var2 var3 >>> python metadump /path/to/file.nc --source wrf
Notes
Prints “filtered” plottable variables to STDOUT
Writes metadata to json file
Creates specified app and specs files
Creates specified app and specs files with ignored subset
Creates specified app and specs files with specified vars
Processes a file with a non-‘generic’ source metadata Sources are generic (default), wrf, lis
Once app and specs files are created one can run autoviz as follows:
python autoviz.py -s <source_name> -f /path/to/app.yaml
- Returns:
populated namespace containing parsed arguments.
- Return type:
parser